PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

Abstract

The definition of a group in abstract algebra is the most important concept and has a fundamental function. One of the group categories is finite abelian groups. A Finite Abelian Group is a group that has finite elements and the defined operation is commutative.

If let G be any finite abelian group, then G is the direct product of its subgroups P_1, P_2, \ldots, P_n or annotated $G = P_1x \ldots x P_k$. Subgroups' P_1, P_2, \ldots, P_n are the Sylow subgroup of G. Each p_i -Sylow Subgroup is then the direct product of cyclic group. If G is a finite abelian group, then $G = A_1x \ldots x A_nx B_1x \ldots B_nx \ldots x C_1x \ldots x C_n$, where $A_b B_b C_b$ are individually the cyclic subgroups of G.

If G and G' are abelian groups of order p^n and $G = A_1 x ... x A_k$, where each A_i is a cyclic group of order p^n , $n_1 \ge ... \ge n_k > 0$, and $G' = B_1 x ... x B_s$, where B_i is a cyclic group of order p^n , $h_i \ge ... \ge h_s > 0$, then G and G' are isomorphic if and only if k = s and for i, $n_i = h_i$. Therefore, if G is an abelian group of order p^n , p a prime then number of nonisomorphic group with G, equals the number of partitions of n are known.